Mathematics Question Paper

Drop.

1. If the roots of $ax^2 + bx + c = 0$ are of the form $\frac{a}{a-1}$ and $\frac{a+1}{a}$, then the value of $(a+b+c)^2$ is

(a)
$$b^2 - 4ac$$

(b)
$$b^2 - 2ac$$

$$(c)2b^2 - ac$$

$$(d)4b^2 - 2ac$$

Sol. $\frac{a}{a-1} + \frac{a+1}{a} = \frac{-b}{a}$ and $\frac{a}{a-1} \cdot \frac{a+1}{a} = \frac{c}{a}$

$$\frac{1}{a-1} + \frac{1}{a} = \frac{1}{a} \quad and \quad \frac{1}{a}$$

$$\Rightarrow \quad \frac{2a^2 - 1}{a^2 - a} = -\frac{b}{a}$$
And
$$\frac{a+1}{a-1} = \frac{c}{a}$$

And
$$\frac{a+1}{a-1} = \frac{a}{a}$$

From Equation (2) aa + a = ca - c

$$\Rightarrow$$
 a(c - a) = a + c \Rightarrow a = $\frac{c+a}{a-a}$

Putting in Equation (i) $\frac{2\left(\frac{c+a}{c-a}\right)^2 - 1}{\left(\frac{c+a}{c-a}\right)^2 - \left(\frac{c+a}{c-a}\right)} = -\frac{b}{a}$

$$\Rightarrow \frac{2(c+a)^2 - (c-a)^2}{(c+a)^2 - (c^2 - a^2)} = -\frac{b}{a}$$

$$\Rightarrow \frac{(c+a)^2 + 4ac}{2a^2 + 2ac} = -\frac{b}{a}$$

$$\Rightarrow (c+a)^2 + 4ac = -2b(a+c)$$

$$\Rightarrow (c+a)^2 + 2b(a+c) + 4ac = 0$$

$$\Rightarrow (c + a)^2 + 2b(a + c) + b^2 = b^2 - 4ac$$

$$\Rightarrow (c+a+b)^2 = b^2 - 4ac$$

Hence,
$$(a + b + c)^2 = b^2 - 4ac$$

2. If 2^{x^2} : $2^{2x} = 8^k$: 1, then the equation has only one solution, if

(a)
$$k = \frac{1}{3}$$

(b)
$$k = \frac{-1}{3}$$

(c)
$$k > \frac{1}{3}$$

(d)
$$k < \frac{-1}{3}$$

Sol. $2^{x^2} = 2^{2x} \cdot 2^{3k} = 2^{2x+3k}$

$$\Rightarrow \qquad x^2 = 2x + 3k \Rightarrow x^2 - 2x - 3k = 0$$

$$D = 4 + 12k = 0 \Rightarrow k = \frac{-1}{3}$$

3. If conjugate and reciprocal of a complex number z = x + iy are equal, then

(a)
$$x + y = 1$$

(a)
$$x + y = 1$$
 (b) $x^2 + y^2 = 1$

$$(c)x = 1 \ and \ y = 0$$

$$(d)x = 0 \ and \ y = 1$$

Sol. Given: Complex number (z) x + iy and conjugate of $z = (\bar{z}) = x - iy$. Since reciprocal of the complex number (z) and its conjugate (\bar{z}) are its conjugate (\bar{z}) a re equal, therefore $\bar{z} = \frac{1}{z}$

$$z\overline{z}=1$$

$$(x+iy)(x-iy)=1$$

or
$$x^2 - (iy)^2 = 1$$
 or

$$x^2 + y^2 = 1.$$

4. If |z| = 1 and $z \neq \pm 1$, then all the value of $\frac{z}{1-z^2}$ lie on

(a) A line not passing through the origin

(b)
$$|z| = \sqrt{2}$$

Sol. Since |z|=1, therefore $z=e^{i\theta}$ as r=1

Therefore,
$$\frac{z}{1-z^2} = \frac{1}{z^{-1}-z} = \frac{1}{e^{-i\theta}-e^{i\theta}} = \frac{-1}{2i\sin\theta}$$
$$= 0 + I \cdot \frac{1}{2\sin\theta} \qquad \left[\because \frac{1}{i} = -i\right]$$

Thus, real part of $\frac{z}{1-z^2}$ is zero. Hence it lies on y-axis.

5.	Let the positive number	ers a, b, c, d, be in AP. T	hen abc, abd, acd, bcd ar	е
	(a) Not in AP/GP / HP	(b) in. AP	(c) in GP	(d) in HP
Sol.	a, b, c, d are in AP			
	Therefore, d, c, b, a are	e also in AP		
	$\Rightarrow \frac{d}{abcd}, \frac{c}{abc}, \frac{1}{acd},$			
	$\Rightarrow \frac{1}{abc}, \frac{1}{abd}, \frac{1}{acd}, \frac{1}{bc}$	$\frac{1}{\log d}$ are in AP		
	⇒ abc, abd, acd,			
6.	The sum of r terms of an AP is denoted by s, and $\frac{s_m}{s_n} = \frac{m^2}{n^2}$. Find the ratio of the m th terms and the n th term of the			
	AP			
	(a) $\frac{2m-1}{2n-1}$	(b) $\frac{2m+1}{2n-1}$	(c) $\frac{2m-1}{2n+1}$	(d) $\frac{2m+1}{2n+1}$
Sol. I	et the first term = a and	211 1	21111	2n+1
5 0				
	Therefore, $s_m = \frac{m}{2} [2a + (m-1)d]$ and $s_n = \frac{n}{2} [2a + (n-1)d]$			
	Therefore, $\frac{s_m}{s_n} = \frac{\frac{m}{2}[2a+1]}{\frac{n}{2}[2a+1]}$	$\frac{(m-1)a]}{(n-1)d]}$ or		
	$\frac{m^2}{n^2} = \frac{m}{n} \cdot \frac{2a + (m-1)d}{2a + (m-1)d}$			
	10 10 20 (10 2)00			
	Or $\frac{2a+(m-1)d}{2a+(n-1)d} = \frac{m}{n}$.			
	This is an identity in m and n.			
	Thus, putting 2m – 1 for m and 2n – 1 for n we get			
	$\frac{2a + (2m - 1 - 1)d}{2a + (2n - 1 - 1)d} = \frac{2m - 1}{2n - 1} \text{ or } \frac{a + (m - 1)d}{a + (n - 1)d} = \frac{2m - 1}{2n - 1}$			
	$\operatorname{Or} \frac{m^{th} \operatorname{term}}{n^{th} \operatorname{term}} = \frac{2m-1}{2n-1}$			
7.	The number of words that can be formed with the letters of the word 'PARALLEL' so that all L's do not come			
	together but both A come together is			
	(a) 420	(b) 3000	(c) <mark>720</mark>	(d) none of these
Sol. \	Vhen both A are together, taking them as single identity,			
	No. of ways = $\frac{7!}{3!}$ (: L's are thrice)			
	When both A and all three L's are together, taking term as two separate identity. No. of ways = 5!			
	Required ways $\frac{7!}{3!} - 5!$	= 840 - 120 = 720		
8.	The number of arrangements of the letters of the word 'BANANA' in which the two N' s do not appear			
	adjacently is			
	(a) 40	(b) 60	(c) 80	(d) 100
Sol.	Total – together (sting	method)		
	$3A^s, 2N^s, 1B$			
	$=\frac{6!}{3!2!}-\frac{5!2!}{3!2!}=60-20=40$			
9.	The total number of arrangements of the letters in the expansion $a^3b^2c^4$ when written at full length is			
	(a) 1260	(b) 2520	(c) 610	(d) none of these
Sol.	There are 9 letters viz.,	• •	• •	•
	These can be arranged in $\frac{9!}{3!2!4!}$ <i>i.e.</i> , 1260 ways			
10		0.2.1.	- at can be formed using 0,	1 2 3 5 7 are
10.	(a) 400	(b)720	(c) 375	(d)216
	1-1	\ - / · — -	\-/ -· -	\ - ,

Sol. Digits are 0, 1, 2, 3, 5, 7

The last place can be filled by (1, 3, 5, 7) 4 ways as the number is to be odd and first place can be filled by 5 ways (excluding 0), so total number will be

$$5 \times 6 \times 6 \times 4 = 720$$

(second and third places can be filled by 6 ways)

11. The sum of the digits in the units place of all numbers formed with the help of 3, 4, 5, 6 taken all at a time is

(a) 246

- (b)252
- (c) 6

- (d) none of these
- Sol. When number at unit place is 3, then other three numbers can be arranged in 3! ways.

Therefore, the sum of the digits in units place when 3 is their at unit place = $3! \times 3$ Similarly, the sum of the digits in

4 at unit place = $3! \times 4$

5 at unit place = $3! \times 5$

6 at unit place = $3! \times 6$

Thus, the sum of the digits in the unit place of all numbers formed with the help of 3, 4, 5, 6 taken all at a time is

$$(3! \times 3) + (3! \times 4) + (3! \times 5) + (3! \times 6)$$

=3! $(3 + 4 + 5 + 6) = 6 \times 18 = 108$

12. For the curve $xy = c^2$ the subnormal at any point varies as:

(a) x^3

(b) x^2

(c) y^3

(d) ∞

Sol. Given, $y = \frac{c^2}{x}$

$$\Longrightarrow$$

$$\frac{dy}{dx} = c^2 \left(-\frac{1}{x^2} \right)$$

 \therefore Subnormal at any point = $y \frac{dy}{dx}$

$$=y \times \left(\frac{c^2}{x^2}\right) = \frac{-y^3}{c^2}$$

- ∴ Subnormal $\propto y^3$.
- 13. Tangent is drawn to ellipse $\frac{x^2}{27} + y^2 = 1$ at $(3\sqrt{3}\cos\theta, \sin\theta)$ (where $\theta \in (0, \pi/2)$). Then the value of θ such that sum of intercepts on axes made by this tangent is minimum, is:

(a) $\pi/3$

- (b) $\pi/6$
- (c) $\pi/8$
- (d) $\pi/4$

Solution:

Equation of tangent at $(3\sqrt{3}\cos\theta, \sin\theta)$ is:

$$\frac{x\cos\theta}{3\sqrt{3}} + \frac{y\sin\theta}{1} = 1$$

Thus, sum of intercepts = $(3\sqrt{3}\cos\theta + \csc\theta) = f(\theta)[say]$

$$\Rightarrow f'(\theta) = \frac{3\sqrt{3}\sin^3\theta - \cos^3\theta}{\sin^2\theta\cos^2\theta}$$

Put $f'(\theta) = 0$

$$\tan \theta = \frac{1}{\sqrt{3}} \implies \theta = \frac{\pi}{6}$$

Also, for $0 < \theta < \frac{\pi}{6}$, $\frac{dz}{d\theta} < 0$ and for $\frac{\pi}{6} < \theta < \frac{\pi}{2}$, $\frac{dz}{d\theta} > 0$

- \therefore Minimum at $\theta = \frac{\pi}{6}$
- 14. For a particles moving in a straight line, if time t be regarded as a function of velocity v, then the rate of change of the acceleration a is given by:
 - (a) $a^2 \frac{d^2t}{dv^2}$
- (b) $a^3 \frac{d^2t}{dv^2}$ (c) $-a^3 \frac{d^2t}{dv^2}$
- (d) None of these

Solution:

Let
$$t = f(v)$$
, then
$$\frac{dt}{dv} = f'(v) \implies \frac{dv}{dt} = \frac{1}{f'(v)}$$

$$\Rightarrow a = \frac{1}{f'(v)} \implies af'(v) = 1$$

$$\Rightarrow af''(v)\frac{dv}{dt} + \frac{da}{dt}f'(v) = 0$$

$$\Rightarrow a^2f''(v) + \frac{da}{dt} \times \frac{1}{a} = 0 \implies \frac{da}{dt} = -a^3 \frac{d^2t}{dv^2}$$

- 15. A point is moving on $y = 4 2x^2$. The x coordinate of the point is decreasing at the rate of 5 unit per second. Then, the rate at which y coordinate of the point is changing when the point is at (1, 2) is:
 - (a) 5 units
- (b) 10 units
- (c) 15 units
- (d) 20 units

Solution:

Given equation of curve is

$$y = 4 - 2x^{2}$$

$$\Rightarrow \frac{dy}{dt} = -4x \frac{dx}{dt}$$
Given,
$$\frac{dx}{dt} = -5, at \ point \ (1, \ 2)$$

$$\therefore \frac{dy}{dt} = -4 \ (1) \ (-5) = 20 \ unit/s$$

- 16. If f(x) is a twice differentiable function, then between two consicutive roots of the equation f'(x) = 0, then exists
 - (a) At least one roots of f(x) = 0
 - (b) At most one roots of f(x) = 0
 - (c) Exactly one root of f(x) = 0
 - (d) At most one root of f''(x) = 0

Solution: (b)

If
$$b-1 \le x \le b$$
, from Rolle's theorem

$$f(b-1) = f(b) = 0$$
$$f'(x) = 0$$
$$x = 0$$

Suppose such that

and

Hence, f(x) = 0 has at amost one root.

- 17. A function $f: R \to R$ satisfies the equation $f(x) f(y) f(xy) = x + y, \forall x, y \in R \text{ and } f(1) > 0, \text{ also } h(x) = f(x) f^{-1}(x)$, then length of longest interval in which $h(\sin x + \cos x)$ is strictly increasing is:
 - (a) $\frac{\pi}{4}$
- (b) $\frac{\pi}{3}$

(c) $\frac{\pi}{2}$

(d) π

Solution: (c)

$$f(x)$$
 $f(y) - f(xy) = x + y, \forall x, y \in R$ (i)
Substituting $x = 1$, $y = 1$, we get

 $b-1 \le c \le b$

$$(f(1))^{2} - f(1) - 2 = 0$$
$$(f(1) - 2) (f(1) + 1) = 0$$

As,
$$f(1) > 0 \Rightarrow f(1) = 2$$

Now, substituting y = 1 in Eq. (i), we get

$$f(x) \times 2 - f(x) = x + 1$$

$$f(x) = x + 1$$

$$f^{-1}(x) = x - 1$$

$$h(x) = f(x) f^{-1}(x) = x^{2} - 1$$

$$h(\sin x + \cos x) = (\sin x + \cos x) - 1 = \sin 2x$$

As longest interval in which $\sin x$ is strictly increasing is π .

$$\Rightarrow$$
 For $\sin 2x$ it will be $\frac{\pi}{2}$.

18. The period of the function $f(x) = 7\cos(3x + 5)$ is

[a]
$$2\pi$$

[b]
$$\frac{2\pi}{3}$$

[c]
$$\frac{\pi}{3}$$

[d] None of these

Solution: - [b]

 $\cos x$ is a periodic function with period 2π , therefore $\cos(3x+5)$ with be a periodic function with period $\frac{2\pi}{3}$.

Hence, (b) is the correct answer.

19. The curve $x^3 - 3xy^2 = a$ and $3x^2y - y^3 = b$, where a and b are constants, cut each other

[a] at an angle
$$\frac{\pi}{3}$$

[b] at an angle
$$\frac{\pi}{4}$$

[d] none of

these

Solution: - [c]

The two curves are

$$x^3 - 3xy^2 = a$$

and

$$3x^2y - y^3 = b$$

On differentiating Eq.(i) w.r.t. x, we get

$$3x^2 - 3y^2 - 6xy \frac{dy}{dx} = 0$$

$$\Rightarrow$$

$$\frac{dy}{dx} = \frac{x^2 - y^2}{2xy}$$

On differentiating Eq. (ii) w.r.t. x, we get

$$6xy + 3x^2 \frac{dy}{dx} - 3y^2 \frac{dy}{dx} = 0$$

$$\Rightarrow$$

$$\frac{dy}{dx} = -\frac{2xy}{x^2 - y^2}$$

The product of $\frac{dy}{dx}$ for the two curves

$$= \left(\frac{x^2 - y^2}{2xy}\right) \times \left(\frac{-2xy}{x^2 - y^2}\right) = -1.$$

The curves cut each other orthogonally.

Hence (c) is the correct answer.

20. The incentre of the triangle with verticles $(1,\sqrt{3})$, (0,0) and (2,0) is :

a.
$$\left(1, \frac{\sqrt{3}}{2}\right)$$

b.
$$\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$$

c.
$$\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$$

d.
$$(1, \frac{1}{\sqrt{3}})$$

Sol. (d) clearly, the triangle is equilateral.

So, the incentere is the same as the centroid.

$$\therefore \text{ incentre} = \left(\frac{1+0+2}{3}, \frac{\sqrt{3}+0+0}{3}\right) = \left(1, \frac{1}{\sqrt{3}}\right)$$

21. The number of terms common to two A.P.'s 3, 7, 11, ..., 407 and 2, 9, 16, ..., 709 is :

(d) none of these.

Solution : (a) Let m and n be the number of terms of the A. P.'s 3, 7, 11, ..., 407 and 2, 9,

16,709 respectively.

$$407 = 3 + (m-1)(4) \text{ and } 709 = 2 + (n-1)(7)$$

$$\Rightarrow 4m - 1 = 407$$

and
$$7n - 5 = 709$$

$$\Rightarrow$$
 $4m = 408$

$$7n = 714$$

$$\Rightarrow$$
 $m = 102$

$$n = 102$$
.

Thus each A.P. has 102 terms.

Let pth term of first A.P. = qth terms of second A.P.

$$\Rightarrow$$
 3 + $(p-1)(4) = 2 + (q-1)7$

$$\Rightarrow$$
 $4p-1=7q-5 \Rightarrow 4p+4=7q$

$$\Rightarrow$$
 $q = \frac{4(p+1)}{7} \Rightarrow \frac{p+1}{7} = \frac{q}{4} = k(say)$

$$\therefore p + 1 = 7k$$

$$q = 4k$$

$$\Rightarrow$$
 $p = 7k - 1$

$$q=4k$$
.

Clearly
$$p \le 102$$

 $\Rightarrow 7k - 1 \le 102$

$$q \le 102$$

$$\Rightarrow$$
 7 $k < 103$

$$4k \le 102$$
$$k \le 25\frac{1}{3}$$

$$\Rightarrow k \le 14\frac{5}{7}$$

$$k \le 25\frac{1}{2}$$

$$\Rightarrow k = 14.$$

Hence there are 14 common terms.

22. If H is the harmonic mean between P and Q, then $\frac{H}{P} + \frac{H}{Q}$ is:

(b)
$$\frac{P+Q}{PQ}$$

(c)
$$\frac{PQ}{P+Q}$$

(d) none of these

Solution: (a) Here $H = \frac{2PQ}{P+Q}$

$$\therefore \frac{H}{P} + \frac{H}{Q} = H = \left(\frac{1}{P} + \frac{1}{Q}\right)$$
$$= \frac{2PQ}{P+Q} \left(\frac{Q+P}{PQ}\right) = 2.$$

23. If $|z_1 - 1| < 1$, $|z_2 - 2| < 2$, $|z_3 - 3| < 3$, then $|z_1 + z_2 + z_3|$:

(a) Is less than 6

(b) is more than 3

(c) is less than 12

(d) lies between 6 and 12.

Solution: (c)
$$|z_1 + z_2 + z_3| = |(z_1 - 1) + (z_2 - 2) + (z_2 - 2) + 6|$$

 $\leq |z_1 - 1| + |z_2 - 2| ||z_2 - 2| + 6$
 $< 1 + 2 + 3 + 6 = 12.$

24. If $log_{0.3}(x-1) < log_{09}(x-1)$ then x lies in the interval

(a)
$$(2, \infty)$$

(b)
$$(1, 2)$$

(c)
$$(2, -1)$$

(d) None of these

Solution: (a).

First note that (x-1) must be greater than 0, that is x > 1.

Now
$$\log_{0.3}(x-1) < \log_{.09}(x-1)$$

$$\Rightarrow log_{0,3}(x-1) < log_{(0,3)^2}(x-1)$$

$$\Rightarrow log_{0.3}(x-1) < \frac{1}{2}log_{0.3}(x-1)$$

$$\Rightarrow$$
 $2log_{0.3}(x-1) < log_{0.3}(x-1)$

$$\Rightarrow log_{0.3}(x-1)^2 < log_{0.3}(x-1)$$

$$\Rightarrow \qquad (x-1)^2 > x-1$$

[Note that the inequality is reversed since the base lies between 0 and 1]

$$\Rightarrow (x-1)^2 - (x-1) > 0$$

$$\Rightarrow (x-1)(x-2) > 0$$

Since x > 1, the inequality (1) will hold if x > 2, that is if x lies in the interval $(2, \infty)$.

25. The value of $\frac{C_0}{1} + \frac{C_2}{3} + \frac{C_4}{5} + \dots is$

(a)
$$\frac{2^n}{n+1}$$

(b)
$$\frac{2^{n}-1}{n+1}$$

(c)
$$\frac{2^{n+1}}{n+1}$$

(d) none of these

Solution :-

We have

$$(1+x)^n = \sum_{r=0}^n C_r X^r$$
(i)

$$(1-x)^n = \sum_{r=0}^n (-1)^r C_r X^r$$
(ii)

Adding equation (i) and (ii) we have

$$(1+x)^n + (1-x)^n = C_0 + C_2 x^2 + C_4 x^4 + \dots$$

Integrating both sides with respect to x from 0to1, we get

$$\frac{2^{n+1}}{n+1} = \frac{C_0}{1} + \frac{C_2}{3} + \frac{C_4}{5} + \cdots$$

26. There are p + q + r books in which there are p copies of the same title, q copies of another title and one copy each of r different titles. The number of ways in which one or more books can be selected is -

(a)
$$2^{p+q+r}-1$$

(a)
$$2^{p+q+r}-1$$
 (b) $(p+1)(q+1)2^r-1$ (c) $2^{p+q-1}(2^r-1)$ (d) $2^{p+q}(2^r+1)-1$

(c)
$$2^{p+q-1}(2^r-1)$$

d)
$$2^{p+q}(2^r+1)-1$$

Solution :- (b)

Out of the p books that are alike. $m(0 \le m \le p)$ books can be selected in only one way, so that the total number of selection of no books out of p copies of the same title is p + 1.

Similarly the total number of selection of no books or more books out of q copies of the same title is q + 1. The remaining r books are of r different titles and the total number of selection of no book or one or more books is 2^r as each book can be dealt with in two ways: rejections or acceptance.

The total number of selections is $(p + 1) (q + 1) 2^r - 1$ as total rejection is excluded.

27. The number of 5 digit numbers of the form xyzyz in which x < y is

Solution :- (b)

The first digit x can be any one of 1 to 8 whereas z can be any one of 0 to 9.

When x is 1, y can assume the values 2 to 9;

When x is 2, y can assume the values 3 to 9 and so on.

Thus the total number = $(8 + 7 + \dots + 1) \times = \frac{8.9}{2}$. 10 = 360.

- 28. The straight lines 4x 3y 5 = 0, x 2y 0 = 0, 7x + y 40 = 0 nd x + 3y + 0 = 0 from the sides of a:
 - (a) Quadrilateral
- (b) cyclic quadrilateral

- (c) Rectangle
- (d) parallelogram

Solution:- (b)

Slopes of the lines re 4/3, ½, -7 and -1/3 respectively. if α is the angle between second and fourth. $\tan \alpha = -1$, $\tan \beta = 1 \implies \alpha = 135^{\circ}$, $\beta = 45^{\circ} \implies \alpha + \beta = 180^{\circ}$

So the quadrilateral in cyclic.

Since no two sides are parallel, it cannot be a parallelogram or a rectangle.

- 29. The equation of the bisector of the acute angle between the lines 2x y + 4 = 0 and x 2y = 1 is
 - (a) x + y + 5 = 0
- (b) x y + 1 = 0
- (c) x y = 5
- (d) none of

these

Solution :- (b)

Clearly from the figure, the origin is contained in the acute angle. Writing the equations of the lines as 2x - y + 4 = 0 and -x + 2y = 0, the required bisector is

$$\frac{2x - y + 4}{\sqrt{5}} = \frac{-x + 2y + 1}{\sqrt{5}}$$

- 30. If the equation of the pair of straight lines passing through the point (1,1), one making an angle θ with the positive direction of x –axis and the other making the same angle with the positive direction of y axis is $x^2 (a+2)xy + y^2 + a(x+y-1) = 0$, $a \neq -2$, then the value of sin 2 θ is:
 - (a) a-2
- (b) a + 2
- (c) 2/(a+2)
- (d) 2/a

Solution:- (c)

Equation of the given lines are

 $y-1=\tan\theta~(x-1)$ and $y-1=\cot\theta~(x-1)$ so their joint equation is:

$$[(y-1) - \tan \theta (x-1)] [(y-1) - \cot \theta (x-1)] = 0$$

$$\Rightarrow (y-1)^2 - (\tan \theta + \cot \theta) (x-1)(y-1) + (x+1)^2 = 0$$

$$\Rightarrow x^2 - (\tan \theta + \cot \theta) xy + y^2 + (\tan \theta + \cot \theta - 2) (x + y - 1) = 0$$

Comparing with the given equation we get

$$\tan \theta + \cot \theta = a + 2$$

$$\Rightarrow \frac{1}{\sin \theta \cos \theta} = a + 2 \implies \sin 2\theta = \frac{2}{a+2}$$